summaryrefslogtreecommitdiff
path: root/drivers/spi/u8500_spi.c
blob: dd5f3eaf915bc962196a59b89cdef4b285827cec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
/*
* Copyright (C) ST-Ericsson SA 2010
* Author: Markus Helgesson <Markus.Helgesson@stericsson.com>
* for ST-Ericsson.
* License terms: GNU General Public License (GPL), version 2.
*
* This driver is influenced by spi-stm.c and stm_spi023.c
* in the linux kernel.
*/

#include <common.h>
#include <malloc.h>
#include <asm/io.h>
#include <asm/arch/clock.h>
#include <asm/arch/hardware.h>
#include <spi.h>


#ifndef CONFIG_U8500
#error "This driver currently only supports the u8500 platform. Sorry."
#endif


/*#######################################################################
  Print macros
#########################################################################
*/
#define pr(pre, str, ...)\
	printf(pre "[%s {%u}] " str "\n", __func__, __LINE__, ##__VA_ARGS__)
#define pr_err(str, ...)	pr("E", str, ##__VA_ARGS__)
#define pr_warn(str, ...)	pr("W", str, ##__VA_ARGS__)

#define dpr(pre, str, ...)\
	debug(pre "[%s {%u}] " str "\n", __func__, __LINE__, ##__VA_ARGS__)
#define pr_info(str, ...)	dpr("I", str, ##__VA_ARGS__)
#define pr_dbg(str, ...)	dpr("D", str, ##__VA_ARGS__)


/*#######################################################################
  Register locations
#########################################################################
*/
#ifdef U8500_SPI0_BASE
#define SPI_0_BASE	U8500_SPI0_BASE
#endif

#ifdef U8500_SPI1_BASE
#define SPI_1_BASE	U8500_SPI1_BASE
#endif

#ifdef U8500_SPI2_BASE
#define SPI_2_BASE	U8500_SPI2_BASE
#endif

#ifdef U8500_SPI3_BASE
#define SPI_3_BASE	U8500_SPI3_BASE
#endif


/*#######################################################################
  Macros to access SPI Registers with their offsets
#########################################################################
*/
#define SPI_CR0(r)	((u8 *)r + 0x000)
#define SPI_CR1(r)	((u8 *)r + 0x004)
#define SPI_DR(r)	((u8 *)r + 0x008)
#define SPI_SR(r)	((u8 *)r + 0x00C)
#define SPI_CPSR(r)	((u8 *)r + 0x010)

/*#######################################################################
  SPI Control Register 0  - SPI_CR0
#########################################################################
*/
#define SPI_CR0_MASK_DSS		((u32)(0x1FUL << 0))
#define SPI_CR0_MASK_SPO		((u32)(0x1UL << 6))
#define SPI_CR0_MASK_SPH		((u32)(0x1UL << 7))
#define SPI_CR0_MASK_SCR		((u32)(0xFFUL << 8))

/*#######################################################################
  SPI Control Register 0  - SPI_CR1
#########################################################################
*/
#define SPI_CR1_MASK_SSE		((u32)(0x1UL << 1))
#define SPI_CR1_MASK_RENDN		((u32)(0x1UL << 4))
#define SPI_CR1_MASK_TENDN		((u32)(0x1UL << 5))

/*#######################################################################
  SPI Status Register  - SPI_sr
#########################################################################
*/
#define SPI_SR_MASK_TNF			((u32)(0x1UL << 1))
#define SPI_SR_MASK_RNE			((u32)(0x1UL << 2))
#define SPI_SR_MASK_BSY			((u32)(0x1UL << 4))

/*#######################################################################
  SPI Clock Prescale Register  - SPI_cpsr
#########################################################################
*/
#define SPI_CPSR_MASK_CPSDVSR		((u32)(0xFFUL << 0))

/*#######################################################################
  SPI Clock Parameter ranges
#########################################################################
*/
#define MIN_CPSDVR 0x02
#define MAX_CPSDVR 0xFE
#define MIN_SCR 0x00
#define MAX_SCR 0xFF
#define STM_SPI_CLOCK_FREQ 48000000
#define STM_SPICTLR_CLOCK_FREQ 48000000

/*#######################################################################
  Other macros
#########################################################################
*/
#define SPI_REG_WRITE_BITS(reg, val, mask, sb) \
		((reg) =   (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))

#define ENABLE_SPI_CONTROLLER(sss)\
	(writel((readl(SPI_CR1(sss->base_addr)) | SPI_CR1_MASK_SSE),\
		SPI_CR1(sss->base_addr)))

#define DISABLE_SPI_CONTROLLER(sss)\
	(writel((readl(SPI_CR1(sss->base_addr)) & (~SPI_CR1_MASK_SSE)),\
		SPI_CR1(sss->base_addr)))

#define FLUSH_SPI_RX_FIFO(sss)\
	do {\
		while (readl(SPI_SR(sss->base_addr)) & SPI_SR_MASK_RNE)\
			readl(SPI_DR(sss->base_addr)) ;\
	} while (readl(SPI_SR(sss->base_addr)) & SPI_SR_MASK_BSY)

#define WAIT_FOR_SPI_CONTROLLER_TO_FINISH(sss)\
	while (readl(SPI_SR(sss->base_addr)) & SPI_SR_MASK_BSY)\
		udelay(1)

/*#######################################################################
  Structures
#########################################################################
*/
struct spi_regs {
	u32 cr0;
	u32 cr1;
	u32 cpsr;
};

struct stm_spi_slave {
	struct spi_slave	slave;
	u8			*base_addr;
	u8			n_bytes;
	struct spi_regs		regs;
};

/* Clock parameters, to set SPI clock at a desired freq */
struct spi_clock_params {
	u8 cpsdvsr;     /* value from 2 to 254 (even only!) */
	u8 scr;         /* value from 0 to 255 */
};

struct spi_transfer {
	u8	*current;
	u8	*end;
	u8	dummy_transfer;
};

/*#######################################################################
  Local function declarations
#########################################################################
*/

/*
 * to_stm_spi_slave - Converts spi_slave ptr to struct stm_spi_slave ptr
 */
static inline struct stm_spi_slave *to_stm_spi_slave(struct spi_slave *slave)
{
	return container_of(slave, struct stm_spi_slave, slave);
}

/*
 * spi_write - Write FIFO data in Data register
 *
 * This function writes data in Tx FIFO till it is not full
 * which is indicated by the status register or our transfer is complete.
 * It also updates the temporary write ptr trans_data->current
 * which maintains current write position in transfer buffer
 */
static void
spi_write(struct stm_spi_slave *sss, struct spi_transfer * trans_data);

 /*
 * spi_read - Read FIFO data in Data register
 *
 * This function reads data in Rx FIFO till it is not empty
 * which is indicated by the status register or our transfer is complete.
 * It also updates the temporary Read ptr trans_data->current
 * which maintains current read position in transfer buffer
 */
static void
spi_read(struct stm_spi_slave *sss, struct spi_transfer * trans_data);

 /*
  * spi023_eff_freq - Calculates the frequency register values
  */
static int spi023_eff_freq(int freq, struct spi_clock_params *clk_freq);


/*#######################################################################
  Global function definitions (declared in spi.h)
#########################################################################
*/

void spi_init()
{
	pr_dbg("");
	/* nothing to do here */
}

struct spi_slave *spi_setup_slave(u32 bus, u32 cs, u32 max_hz, u32 mode)
{
	struct stm_spi_slave	*sss;
	u8			*base_addr;
	u8			data_size;
	struct spi_clock_params	clk_freq;

	pr_dbg("bus %u, cs %u, max_hz %u, mode 0x%x", bus, cs, max_hz, mode);

	if (!spi_cs_is_valid(bus, cs)) {
		pr_err("Invalid bus or cs in SPI configuration!");
		return NULL;
	}

	switch (bus) {
#ifdef SPI_0_BASE
	case 0:
		base_addr = (u8 *) SPI_0_BASE;
		break;
#endif
#ifdef SPI_1_BASE
	case 1:
		base_addr = (u8 *) SPI_1_BASE;
		break;
#endif
#ifdef SPI_2_BASE
	case 2:
		base_addr = (u8 *) SPI_2_BASE;
		break;
#endif
#ifdef SPI_3_BASE
	case 3:
		base_addr = (u8 *) SPI_3_BASE;
		break;
#endif
	default:
		pr_err("Unknown SPI controller for bus %u.", bus);
		return NULL;
	}

	clk_freq.scr = 0;
	clk_freq.cpsdvsr = 0;
	if (spi023_eff_freq(max_hz, &clk_freq))
		return NULL;

	pr_dbg("clk_freq.cpsdvsr = %u, clk_freq.scr = %u",
		clk_freq.cpsdvsr, clk_freq.scr);

	/*
	 * mode parameter bit definition:
	 *
	 * 0x0001	SPI_CPHA - clock phase
	 * 0x0002	SPI_CPOL - clock polarity
	 * 0x0004	NOT USED	(reserved for SPI_CS_HIGH)
	 * 0x0008	SPI_LSB_FIRST - per-word bits-on-wire
	 * 0x0010	NOT USED	(reserved for SPI_3WIRE)
	 * 0x0020	NOT USED	(reserved for SPI_LOOP)
	 * 0x03C0	NOT USED (bits 6--9)
	 * 0x7C00	Data size select (bits 10--14),
	 *		Size can be 4--32 bits and value is calculated as
	 *		(desired data size - 1) so
	 *			0 0011 - 4-bit data size
	 *			0 0100 - 5 bit data size
	 *			...
	 *			1 1111 - 32-bit data size
	 */
	data_size = ((mode & 0x7C00) >> 10) + 1;
	if ((data_size < 4) || (data_size > 32)) {
		pr_err("Data size %u bits is not supported.", data_size);
		return NULL;
	}

	sss = malloc(sizeof(struct stm_spi_slave));
	if (!sss) {
		pr_err("Failed to allocate struct. Out of memory?");
		return NULL;
	}

	sss->slave.bus = bus;
	sss->slave.cs = cs;
	sss->base_addr = base_addr;

	if (data_size > 16)
		sss->n_bytes = 4;
	else if (data_size > 8)
		sss->n_bytes = 2;
	else
		sss->n_bytes = 1;

	sss->regs.cr0 = 0;
	sss->regs.cr1 = 0;
	sss->regs.cpsr = 0;

	/* data size */
	SPI_REG_WRITE_BITS(
		sss->regs.cr0, (data_size-1), SPI_CR0_MASK_DSS, 0);

	/* clock polarity */
	if (mode & SPI_CPOL)
		SPI_REG_WRITE_BITS(sss->regs.cr0, 1, SPI_CR0_MASK_SPO, 6);

	/* clock phase */
	if (mode & SPI_CPHA)
		SPI_REG_WRITE_BITS(sss->regs.cr0, 1, SPI_CR0_MASK_SPH, 7);

	/* serial clock rate */
	SPI_REG_WRITE_BITS(sss->regs.cr0, clk_freq.scr, SPI_CR0_MASK_SCR, 8);

	/* endian format */
	if (mode & SPI_LSB_FIRST) {
		SPI_REG_WRITE_BITS(sss->regs.cr1, 1, SPI_CR1_MASK_RENDN, 4);
		SPI_REG_WRITE_BITS(sss->regs.cr1, 1, SPI_CR1_MASK_TENDN, 5);
	}

	/* clock prescale divisor */
	SPI_REG_WRITE_BITS(
		sss->regs.cpsr, clk_freq.cpsdvsr, SPI_CPSR_MASK_CPSDVSR, 0);

	pr_dbg("sss->slave.bus =  %u", sss->slave.bus);
	pr_dbg("sss->slave.cs =   %u", sss->slave.cs);
	pr_dbg("sss->base_addr =  0x%p", sss->base_addr);
	pr_dbg("sss->regs.cr0 =   0x%x", sss->regs.cr0);
	pr_dbg("sss->regs.cr1 =   0x%x", sss->regs.cr1);
	pr_dbg("sss->regs.cpsr =  0x%x", sss->regs.cpsr);

	return (struct spi_slave *) sss;
}

void spi_free_slave(struct spi_slave *slave)
{
	struct stm_spi_slave *sss = to_stm_spi_slave(slave);
	pr_dbg("slave 0x%p", slave);

	free(sss);
}

int spi_claim_bus(struct spi_slave *slave)
{
	struct stm_spi_slave *sss = to_stm_spi_slave(slave);

	pr_dbg("slave 0x%p", slave);

	/*
	 * 0. Enable the clock to the SPI controller and
	 *    configure controller specific information.
	 *
	 * TODO: The GPIO pins below are hardcoded for db8500.
	 */
	switch (sss->slave.bus) {
#if defined(SPI_0_BASE) && defined(CONFIG_U8500)
	case 0:
		u8500_clock_enable(2, 8, -1);
		break;
#endif
#if defined(SPI_1_BASE) && defined(CONFIG_U8500)
	case 1:
		u8500_clock_enable(2, 2, -1);
		break;
#endif
#if defined(SPI_2_BASE) && defined(CONFIG_U8500)
	case 2:
		u8500_clock_enable(2, 1, -1);

		/*
		 * For SPI2 on u8500 the GPIO's need to be set to
		 * Other Alt C1 by setting bit 23 in PRCM_GPIOCR
		 * (GPIO muxing control register)
		 *
		 * TODO: This should be done nicer through some driver...
		 */
		writel(readl(U8500_PRCMU_BASE + 0x138) | (1<<23),
		       (U8500_PRCMU_BASE + 0x138));
		break;
#endif
#if defined(SPI_3_BASE) && defined(CONFIG_U8500)
	case 3:
		u8500_clock_enable(1, 7, -1);
		break;
#endif
	default:
		pr_err("Unknown SPI controller for bus %u.", sss->slave.bus);
		return -1;
	}

	/*
	 * 1. Clear SSE bit in SPI_CR1 register. This step is not required
	 *    after an hardware or software reset of the device.
	 *    The input/output pins are switched to GPIO input mode.
	 */
	DISABLE_SPI_CONTROLLER(sss);


	/*
	 * 2. Empty the receive FIFO. This step is not required after an
	 *    hardware or software reset of the device, as the FIFO pointer
	 *    will be cleared.
	 */
	FLUSH_SPI_RX_FIFO(sss);


	/*
	 * 3. Program the GPIO on which SPI port signals are attached to.
	 * This should already be done by the Board GPIO setup
	 */

	/*
	 * 4. Program the SPI clock prescale register, SPI_CPSR,
	 *   then the configuration registers SPI_CR0 and SPI_CR1.
	 */
	writel(sss->regs.cpsr, SPI_CPSR(sss->base_addr));
	writel(sss->regs.cr0, SPI_CR0(sss->base_addr));
	writel(sss->regs.cr1, SPI_CR1(sss->base_addr));


	/*
	 * The remaining steps are done during the transfer:
	 *
	 * 5. write at least one word to the TxFIFO.
	 * 6. The transmit FIFO can optionally be filled before
	 *    enabling the SPI.
	 * 7. Set SSE = 1b to enable the SPI operation.
	 */

	return 0;
}

void spi_release_bus(struct spi_slave *slave)
{
	pr_dbg("slave 0x%p", slave);

	/* nothing to do here */
}


int spi_xfer(struct spi_slave *slave, u32 bitlen,
		const void *dout, void *din, unsigned long flags)
{
	struct stm_spi_slave	*sss = to_stm_spi_slave(slave);
	const u32		n_bytes = bitlen / 8;
	int			ret = 0;
	int			rx_max_tries;
	struct spi_transfer		tx;
	struct spi_transfer		rx;

	pr_dbg("slave 0x%p, bitlen %u, dout 0x%p, din 0x%p, flags 0x%lx",
		slave, bitlen, dout, din, flags);

	if ((dout == NULL) && (din == NULL)) {
		flags |= SPI_XFER_END;
		pr_err("Both dout and din are NULL so there is nothing to do.");
		ret = -1;
		goto end;
	}

	/*
	 * Only accept bit lengths which are byte multiples and
	 * can be divided in chunks according to the configured
	 * data size set (DSS) according to
	 *
	 * DSS, bits	n_bytes
	 * 3--8		n*1
	 * 9--16	n*2
	 * 17--32	n*4
	 *
	 * For instance, if DSS is 18 the driver will read 4 bytes from
	 * dout and write it to the SPI controller which will send the
	 * first 18 bits and simply discard the remaining 14 bits.
	 */
	if ((bitlen % 8) || (n_bytes % sss->n_bytes)) {
		flags |= SPI_XFER_END;
		pr_err("bitlen is %u but %u is required for configured data size.",
			bitlen, (sss->n_bytes * 8));
		ret = -2;
		goto end;
	}

	/*
	 * The SPI protocol works with both a write and a read, so if the user
	 * has not asked for a read or write we need to do a dummy one instead.
	 */
	tx.dummy_transfer = ((dout == NULL) ? 1 : 0);
	rx.dummy_transfer = ((din == NULL)  ? 1 : 0);

	if (flags & SPI_XFER_BEGIN)
		spi_cs_activate(slave);

	tx.current = (u8 *) dout;
	tx.end = tx.current + n_bytes;
	rx.current = (u8 *) din;
	rx.end = rx.current + n_bytes;

	while (tx.current < tx.end) {
		DISABLE_SPI_CONTROLLER(sss);
		spi_read(sss, &rx);
		spi_write(sss, &tx);
		ENABLE_SPI_CONTROLLER(sss);
		WAIT_FOR_SPI_CONTROLLER_TO_FINISH(sss);
	}

	/* try getting remaining rx bytes, if any */
	rx_max_tries = 10;
	while ((rx.current < rx.end) && (rx_max_tries--)) {
		spi_read(sss, &rx);
		WAIT_FOR_SPI_CONTROLLER_TO_FINISH(sss);
	}

end:
	if (flags & SPI_XFER_END)
		spi_cs_deactivate(slave);

	pr_dbg("returning with %i", ret);

	return ret;
}


int spi_cs_is_valid(u32 bus, u32 cs)
{
	pr_dbg("bus %u, cs %u", bus, cs);

	if ((bus < 4) && (cs == 0))
		return 1;
	else
		return 0;
}


void spi_cs_activate(struct spi_slave *slave)
{
	struct stm_spi_slave *sss = to_stm_spi_slave(slave);
	pr_dbg("slave 0x%p", slave);

	FLUSH_SPI_RX_FIFO(sss);
	ENABLE_SPI_CONTROLLER(sss);
}


void spi_cs_deactivate(struct spi_slave *slave)
{
	struct stm_spi_slave *sss = to_stm_spi_slave(slave);
	pr_dbg("slave 0x%p", slave);

	DISABLE_SPI_CONTROLLER(sss);
}



/*#######################################################################
  Local function definitions
#########################################################################
*/

/*
 * spi023_eff_freq() is copied from stm_spi023.c
 * with as few changes as possible.
 */
static int spi023_eff_freq(int freq, struct spi_clock_params *clk_freq)
{
	/* Lets calculate the frequency parameters */
	u32 cpsdvsr = 2;
	u32 scr = 0;
	int freq_found = 0;
	u32 max_tclk;
	u32 min_tclk;
	/* cpsdvscr = 2 & scr 0 */
	max_tclk = (STM_SPICTLR_CLOCK_FREQ / (MIN_CPSDVR * (1 + MIN_SCR)));
	/* cpsdvsr = 254 & scr = 255 */
	min_tclk = (STM_SPICTLR_CLOCK_FREQ / (MAX_CPSDVR * (1 + MAX_SCR)));

	if ((freq <= max_tclk) && (freq >= min_tclk)) {
		while (cpsdvsr <= MAX_CPSDVR && !freq_found) {
			while (scr <= MAX_SCR && !freq_found) {
				if ((STM_SPICTLR_CLOCK_FREQ /
						(cpsdvsr * (1 + scr))) > freq) {
					scr += 1;
				} else {
					/*
					 * This bool is made TRUE when
					 * effective frequency >= target freq
					 * is found
					 */
					freq_found = 1;
					if ((STM_SPICTLR_CLOCK_FREQ /
						(cpsdvsr * (1 + scr)))
							!= freq) {
						if (scr == MIN_SCR) {
							cpsdvsr -= 2;
							scr = MAX_SCR;
						} else {
							scr -= 1;
						}
					}
				}
			}

			if (!freq_found) {
				cpsdvsr += 2;
				scr = MIN_SCR;
			}
		}

		if (cpsdvsr != 0) {
			pr_info("SPI Effec Freq is 0x%x",
				(STM_SPICTLR_CLOCK_FREQ / (cpsdvsr * (1 + scr)))
			);

			clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
			clk_freq->scr = (u8) (scr & 0xFF);

			pr_dbg("SPI cpsdvsr = %d, scr = %d",
				clk_freq->cpsdvsr, clk_freq->scr);
		}
	} else {
		/* User is asking for out of range Freq. */
		pr_err("setup - ctlr data incorrect: Out of Range Frequency");
		return -1;
	}

	return 0;
}



static void
spi_write(struct stm_spi_slave *sss, struct spi_transfer * trans_data)
{
	pr_dbg("sss 0x%p, trans_data 0x%p, trans_data->current 0x%p ",
		sss, trans_data, trans_data->current);

	while ((readl(SPI_SR(sss->base_addr)) & SPI_SR_MASK_TNF)
			&& (trans_data->current < trans_data->end)) {
		if (trans_data->dummy_transfer) {
			writel(0x0, SPI_DR(sss->base_addr));
			pr_dbg("Wrote 0x%08x", 0);
		} else if (sss->n_bytes == 1) {
			writeb(*(u8 *) (trans_data->current),
				SPI_DR(sss->base_addr));
			pr_dbg("Wrote 0x%08x",
				(u32)(*(u8 *) (trans_data->current)));
		} else if (sss->n_bytes == 2) {
			writew(*(u16 *) (trans_data->current),
				SPI_DR(sss->base_addr));
			pr_dbg("Wrote 0x%08x",
				(u32)(*(u16 *) (trans_data->current)));
		} else if (sss->n_bytes == 4) {
			writel(*(u32 *) (trans_data->current),
				SPI_DR(sss->base_addr));
			pr_dbg("Wrote 0x%08x",
				(u32)(*(u32 *) (trans_data->current)));
		} else {
			pr_err("Invalid SPI configuration, n_bytes = %u",
				sss->n_bytes);
			trans_data->current = trans_data->end;
			return;
		}

		trans_data->current += sss->n_bytes;
	}
}


static void
spi_read(struct stm_spi_slave *sss, struct spi_transfer * trans_data)
{
	pr_dbg("sss 0x%p, trans_data 0x%p, trans_data->current 0x%p ",
		sss, trans_data, trans_data->current);

	while ((readl(SPI_SR(sss->base_addr)) & SPI_SR_MASK_RNE)
			&& (trans_data->current < trans_data->end)) {
		if (trans_data->dummy_transfer) {
			(void)readl(SPI_DR(sss->base_addr));
		} else if (sss->n_bytes == 1) {
			*(u8 *) (trans_data->current) =
				readb(SPI_DR(sss->base_addr));
			pr_dbg("Read 0x%02x",
				(u8)(*(u8 *) (trans_data->current)));
		} else if (sss->n_bytes == 2) {
			*(u16 *) (trans_data->current) =
				readw(SPI_DR(sss->base_addr));
			pr_dbg("Read 0x%04x",
				(u16)(*(u16 *) (trans_data->current)));
		} else if (sss->n_bytes == 4) {
			*(u32 *) (trans_data->current) =
				readl(SPI_DR(sss->base_addr));
			pr_dbg("Read 0x%08x",
				(u32)(*(u32 *) (trans_data->current)));
		} else {
			pr_err("Invalid SPI configuration, n_bytes = %u",
				sss->n_bytes);
			trans_data->current = trans_data->end;
			return;
		}

		trans_data->current += sss->n_bytes;
	}
}