summaryrefslogtreecommitdiff
path: root/lib/intel_allocator.c
diff options
context:
space:
mode:
authorZbigniew Kempczyński <zbigniew.kempczynski@intel.com>2020-10-23 09:30:11 +0200
committerZbigniew Kempczyński <zbigniew.kempczynski@intel.com>2021-04-13 15:44:38 +0200
commite4d8b8b01d25d507cf850c69a3da3ec08ec6c88e (patch)
tree0c85e75f3f27d0352a31ae93af28d18ead9a1aa2 /lib/intel_allocator.c
parent86f1cf4d0c929aaf9b2ceec6de79c36fa44a0bdf (diff)
lib/intel_allocator: Add intel_allocator core
For discrete gens we have to cease of using relocations when batch buffers are submitted to GPU. On cards which have ppgtt we can use softpin establishing addresses on our own. We added simple allocator (taken from Mesa; works on lists) and random allocator to exercise batches with different addresses. All of that works for single VM (context) so we have to add additional layer (intel_allocator) to support multiprocessing / multithreading. For main IGT process (also for threads created in it) intel_allocator resolves addresses "locally", just by mutexing access to global allocator data (ctx/vm map). When fork() is in use children cannot establish addresses on they own and have to contact to the thread spawned within main IGT process. Currently SysV IPC message queue was chosen as a communication channel between children and allocator thread. Child calls same functions as main IGT process, only communication path will be chosen instead of acquiring addresses locally. v2: Add intel_allocator_open_full() to allow user pass vm range. Add strategy: NONE, LOW_TO_HIGH, HIGH_TO_LOW passed to allocator backend. v3: Child is now able to use allocator directly as standalone. It only need to call intel_allocator_init() to reinitialize appropriate structures. v4: Add pseudo allocator - INTEL_ALLOCATOR_RELOC which just increments offsets to avoid unnecessary conditional code. v5: Alter allocator core according to igt_map changes. v6: Add internal version __intel_allocator_alloc() to return ALLOC_INVALID_ADDRESS without assertion. v7: Add libatomic for linking libigt library. It is required on some archs, like mips. Signed-off-by: Zbigniew Kempczyński <zbigniew.kempczynski@intel.com> Signed-off-by: Dominik Grzegorzek <dominik.grzegorzek@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Petri Latvala <petri.latvala@intel.com> Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch> Acked-by: Petri Latvala <petri.latvala@intel.com>
Diffstat (limited to 'lib/intel_allocator.c')
-rw-r--r--lib/intel_allocator.c1341
1 files changed, 1341 insertions, 0 deletions
diff --git a/lib/intel_allocator.c b/lib/intel_allocator.c
new file mode 100644
index 00000000..9ab541d1
--- /dev/null
+++ b/lib/intel_allocator.c
@@ -0,0 +1,1341 @@
+// SPDX-License-Identifier: MIT
+/*
+ * Copyright © 2021 Intel Corporation
+ */
+
+#include <sys/types.h>
+#include <sys/stat.h>
+#include <sys/ipc.h>
+#include <sys/msg.h>
+#include <fcntl.h>
+#include <pthread.h>
+#include <signal.h>
+#include <stdlib.h>
+#include <unistd.h>
+#include "igt.h"
+#include "igt_map.h"
+#include "intel_allocator.h"
+#include "intel_allocator_msgchannel.h"
+
+//#define ALLOCDBG
+#ifdef ALLOCDBG
+#define alloc_info igt_info
+#define alloc_debug igt_debug
+static const char *reqtype_str[] = {
+ [REQ_STOP] = "stop",
+ [REQ_OPEN] = "open",
+ [REQ_OPEN_AS] = "open as",
+ [REQ_CLOSE] = "close",
+ [REQ_ADDRESS_RANGE] = "address range",
+ [REQ_ALLOC] = "alloc",
+ [REQ_FREE] = "free",
+ [REQ_IS_ALLOCATED] = "is allocated",
+ [REQ_RESERVE] = "reserve",
+ [REQ_UNRESERVE] = "unreserve",
+ [REQ_RESERVE_IF_NOT_ALLOCATED] = "reserve-ina",
+ [REQ_IS_RESERVED] = "is reserved",
+};
+static inline const char *reqstr(enum reqtype request_type)
+{
+ igt_assert(request_type >= REQ_STOP && request_type <= REQ_IS_RESERVED);
+ return reqtype_str[request_type];
+}
+#else
+#define alloc_info(...) {}
+#define alloc_debug(...) {}
+#endif
+
+struct allocator {
+ int fd;
+ uint32_t ctx;
+ uint32_t vm;
+ _Atomic(int32_t) refcount;
+ struct intel_allocator *ial;
+};
+
+struct handle_entry {
+ uint64_t handle;
+ struct allocator *al;
+};
+
+struct intel_allocator *intel_allocator_reloc_create(int fd);
+struct intel_allocator *intel_allocator_random_create(int fd);
+struct intel_allocator *intel_allocator_simple_create(int fd);
+struct intel_allocator *
+intel_allocator_simple_create_full(int fd, uint64_t start, uint64_t end,
+ enum allocator_strategy strategy);
+
+/*
+ * Instead of trying to find first empty handle just get new one. Assuming
+ * our counter is incremented 2^32 times per second (4GHz clock and handle
+ * assignment takes single clock) 64-bit counter would wrap around after
+ * ~68 years.
+ *
+ * allocator
+ * handles <fd, ctx> intel allocator
+ * +-----+ +--------+ +-------------+
+ * | 1 +---------->+ fd: 3 +--------->+ data: ... |
+ * +-----+ +---->+ ctx: 1 | | refcount: 2 |
+ * | 2 +-----+ | ref: 2 | +-------------+
+ * +-----+ +--------+
+ * | 3 +--+ +--------+ intel allocator
+ * +-----+ | | fd: 3 | +-------------+
+ * | ... | +------->| ctx: 2 +--------->+ data: ... |
+ * +-----+ | ref: 1 | | refcount: 1 |
+ * | n +--------+ +--------+ +-------------+
+ * +-----+ |
+ * | ... +-----+ | allocator
+ * +-----+ | | <fd, vm> intel allocator
+ * | ... +--+ | | +--------+ +-------------+
+ * + + | | +->+ fd: 3 +-----+--->+ data: ... |
+ * | +---->+ vm: 1 | | | refcount: 3 |
+ * | | ref: 2 | | +-------------+
+ * | +--------+ |
+ * | +--------+ |
+ * | | fd: 3 | |
+ * +------->+ vm: 2 +-----+
+ * | ref: 1 |
+ * +--------+
+ */
+static _Atomic(uint64_t) next_handle;
+static struct igt_map *handles;
+static struct igt_map *ctx_map;
+static struct igt_map *vm_map;
+static pthread_mutex_t map_mutex = PTHREAD_MUTEX_INITIALIZER;
+#define GET_MAP(vm) ((vm) ? vm_map : ctx_map)
+
+static bool multiprocess;
+static pthread_t allocator_thread;
+
+static bool warn_if_not_empty;
+
+/* For allocator purposes we need to track pid/tid */
+static pid_t allocator_pid = -1;
+extern pid_t child_pid;
+extern __thread pid_t child_tid;
+
+/*
+ * - for parent process we have child_pid == -1
+ * - for child which calls intel_allocator_init() allocator_pid == child_pid
+ */
+static inline bool is_same_process(void)
+{
+ return child_pid == -1 || allocator_pid == child_pid;
+}
+
+static struct msg_channel *channel;
+
+static int send_alloc_stop(struct msg_channel *msgchan)
+{
+ struct alloc_req req = {0};
+
+ req.request_type = REQ_STOP;
+
+ return msgchan->send_req(msgchan, &req);
+}
+
+static int send_req(struct msg_channel *msgchan, pid_t tid,
+ struct alloc_req *request)
+{
+ request->tid = tid;
+ return msgchan->send_req(msgchan, request);
+}
+
+static int recv_req(struct msg_channel *msgchan, struct alloc_req *request)
+{
+ return msgchan->recv_req(msgchan, request);
+}
+
+static int send_resp(struct msg_channel *msgchan,
+ pid_t tid, struct alloc_resp *response)
+{
+ response->tid = tid;
+ return msgchan->send_resp(msgchan, response);
+}
+
+static int recv_resp(struct msg_channel *msgchan,
+ pid_t tid, struct alloc_resp *response)
+{
+ response->tid = tid;
+ return msgchan->recv_resp(msgchan, response);
+}
+
+static inline void map_entry_free_func(struct igt_map_entry *entry)
+{
+ free(entry->data);
+}
+
+static uint64_t __handle_create(struct allocator *al)
+{
+ struct handle_entry *h = malloc(sizeof(*h));
+
+ igt_assert(h);
+ h->handle = atomic_fetch_add(&next_handle, 1);
+ h->al = al;
+ igt_map_insert(handles, h, h);
+
+ return h->handle;
+}
+
+static void __handle_destroy(uint64_t handle)
+{
+ struct handle_entry he = { .handle = handle };
+
+ igt_map_remove(handles, &he, map_entry_free_func);
+}
+
+static struct allocator *__allocator_find(int fd, uint32_t ctx, uint32_t vm)
+{
+ struct allocator al = { .fd = fd, .ctx = ctx, .vm = vm };
+ struct igt_map *map = GET_MAP(vm);
+
+ return igt_map_search(map, &al);
+}
+
+static struct allocator *__allocator_find_by_handle(uint64_t handle)
+{
+ struct handle_entry *h, he = { .handle = handle };
+
+ h = igt_map_search(handles, &he);
+ if (!h)
+ return NULL;
+
+ return h->al;
+}
+
+static struct allocator *__allocator_create(int fd, uint32_t ctx, uint32_t vm,
+ struct intel_allocator *ial)
+{
+ struct igt_map *map = GET_MAP(vm);
+ struct allocator *al = malloc(sizeof(*al));
+
+ igt_assert(al);
+ igt_assert(fd == ial->fd);
+ al->fd = fd;
+ al->ctx = ctx;
+ al->vm = vm;
+ atomic_init(&al->refcount, 0);
+ al->ial = ial;
+
+ igt_map_insert(map, al, al);
+
+ return al;
+}
+
+static void __allocator_destroy(struct allocator *al)
+{
+ struct igt_map *map = GET_MAP(al->vm);
+
+ igt_map_remove(map, al, map_entry_free_func);
+}
+
+static int __allocator_get(struct allocator *al)
+{
+ struct intel_allocator *ial = al->ial;
+ int refcount;
+
+ atomic_fetch_add(&al->refcount, 1);
+ refcount = atomic_fetch_add(&ial->refcount, 1);
+ igt_assert(refcount >= 0);
+
+ return refcount;
+}
+
+static bool __allocator_put(struct allocator *al)
+{
+ struct intel_allocator *ial = al->ial;
+ bool released = false;
+ int refcount, al_refcount;
+
+ al_refcount = atomic_fetch_sub(&al->refcount, 1);
+ refcount = atomic_fetch_sub(&ial->refcount, 1);
+ igt_assert(refcount >= 1);
+ if (refcount == 1) {
+ if (!ial->is_empty(ial) && warn_if_not_empty)
+ igt_warn("Allocator not clear before destroy!\n");
+
+ /* Check allocator has also refcount == 1 */
+ igt_assert_eq(al_refcount, 1);
+
+ released = true;
+ }
+
+ return released;
+}
+
+static struct intel_allocator *intel_allocator_create(int fd,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ uint8_t allocator_strategy)
+{
+ struct intel_allocator *ial = NULL;
+
+ switch (allocator_type) {
+ /*
+ * Few words of explanation is required here.
+ *
+ * INTEL_ALLOCATOR_NONE allows keeping information in the code (intel-bb
+ * is an example) we're not using IGT allocator itself and likely
+ * we rely on relocations.
+ * So trying to create NONE allocator doesn't makes sense and below
+ * assertion catches such invalid usage.
+ */
+ case INTEL_ALLOCATOR_NONE:
+ igt_assert_f(allocator_type != INTEL_ALLOCATOR_NONE,
+ "We cannot use NONE allocator\n");
+ break;
+ case INTEL_ALLOCATOR_RELOC:
+ ial = intel_allocator_reloc_create(fd);
+ break;
+ case INTEL_ALLOCATOR_RANDOM:
+ ial = intel_allocator_random_create(fd);
+ break;
+ case INTEL_ALLOCATOR_SIMPLE:
+ if (!start && !end)
+ ial = intel_allocator_simple_create(fd);
+ else
+ ial = intel_allocator_simple_create_full(fd, start, end,
+ allocator_strategy);
+ break;
+ default:
+ igt_assert_f(ial, "Allocator type %d not implemented\n",
+ allocator_type);
+ break;
+ }
+
+ igt_assert(ial);
+
+ ial->type = allocator_type;
+ ial->strategy = allocator_strategy;
+ pthread_mutex_init(&ial->mutex, NULL);
+
+ return ial;
+}
+
+static void intel_allocator_destroy(struct intel_allocator *ial)
+{
+ alloc_info("Destroying allocator (empty: %d)\n", ial->is_empty(ial));
+
+ ial->destroy(ial);
+}
+
+static struct allocator *allocator_open(int fd, uint32_t ctx, uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ uint8_t allocator_strategy,
+ uint64_t *ahndp)
+{
+ struct intel_allocator *ial;
+ struct allocator *al;
+ const char *idstr = vm ? "vm" : "ctx";
+
+ igt_assert(ahndp);
+
+ al = __allocator_find(fd, ctx, vm);
+ if (!al) {
+ alloc_info("Allocator fd: %d, ctx: %u, vm: %u, <0x%llx : 0x%llx> "
+ "not found, creating one\n",
+ fd, ctx, vm, (long long) start, (long long) end);
+ ial = intel_allocator_create(fd, start, end, allocator_type,
+ allocator_strategy);
+ al = __allocator_create(fd, ctx, vm, ial);
+ }
+
+ ial = al->ial;
+
+ igt_assert_f(ial->type == allocator_type,
+ "Allocator type must be same for fd/%s\n", idstr);
+
+ igt_assert_f(ial->strategy == allocator_strategy,
+ "Allocator strategy must be same or fd/%s\n", idstr);
+
+ __allocator_get(al);
+ *ahndp = __handle_create(al);
+
+ return al;
+}
+
+static struct allocator *allocator_open_as(struct allocator *base,
+ uint32_t new_vm, uint64_t *ahndp)
+{
+ struct allocator *al;
+
+ igt_assert(ahndp);
+ al = __allocator_create(base->fd, base->ctx, new_vm, base->ial);
+ __allocator_get(al);
+ *ahndp = __handle_create(al);
+
+ return al;
+}
+
+static bool allocator_close(uint64_t ahnd)
+{
+ struct allocator *al;
+ bool released, is_empty = false;
+
+ al = __allocator_find_by_handle(ahnd);
+ if (!al) {
+ igt_warn("Cannot find handle: %llx\n", (long long) ahnd);
+ return false;
+ }
+
+ released = __allocator_put(al);
+ if (released) {
+ is_empty = al->ial->is_empty(al->ial);
+ intel_allocator_destroy(al->ial);
+ }
+
+ if (!atomic_load(&al->refcount))
+ __allocator_destroy(al);
+
+ __handle_destroy(ahnd);
+
+ return is_empty;
+}
+
+static int send_req_recv_resp(struct msg_channel *msgchan,
+ struct alloc_req *request,
+ struct alloc_resp *response)
+{
+ int ret;
+
+ ret = send_req(msgchan, child_tid, request);
+ if (ret < 0) {
+ igt_warn("Error sending request [type: %d]: err = %d [%s]\n",
+ request->request_type, errno, strerror(errno));
+
+ return ret;
+ }
+
+ ret = recv_resp(msgchan, child_tid, response);
+ if (ret < 0)
+ igt_warn("Error receiving response [type: %d]: err = %d [%s]\n",
+ request->request_type, errno, strerror(errno));
+
+ /*
+ * This is main assumption - we receive message which size must be > 0.
+ * If this is fulfilled we return 0 as a success.
+ */
+ if (ret > 0)
+ ret = 0;
+
+ return ret;
+}
+
+static int handle_request(struct alloc_req *req, struct alloc_resp *resp)
+{
+ int ret;
+ long refcnt;
+
+ memset(resp, 0, sizeof(*resp));
+
+ if (is_same_process()) {
+ struct intel_allocator *ial;
+ struct allocator *al;
+ uint64_t start, end, size, ahnd;
+ uint32_t ctx, vm;
+ bool allocated, reserved, unreserved;
+ /* Used when debug is on, so avoid compilation warnings */
+ (void) ctx;
+ (void) vm;
+ (void) refcnt;
+
+ /*
+ * Mutex only work on allocator instance, not stop/open/close
+ */
+ if (req->request_type > REQ_CLOSE) {
+ /*
+ * We have to lock map mutex because concurrent open
+ * can lead to resizing the map.
+ */
+ pthread_mutex_lock(&map_mutex);
+ al = __allocator_find_by_handle(req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ igt_assert(al);
+
+ ial = al->ial;
+ igt_assert(ial);
+ pthread_mutex_lock(&ial->mutex);
+ }
+
+ switch (req->request_type) {
+ case REQ_STOP:
+ alloc_info("<stop>\n");
+ break;
+
+ case REQ_OPEN:
+ pthread_mutex_lock(&map_mutex);
+ al = allocator_open(req->open.fd,
+ req->open.ctx, req->open.vm,
+ req->open.start, req->open.end,
+ req->open.allocator_type,
+ req->open.allocator_strategy,
+ &ahnd);
+ refcnt = atomic_load(&al->refcount);
+ ret = atomic_load(&al->ial->refcount);
+ pthread_mutex_unlock(&map_mutex);
+
+ resp->response_type = RESP_OPEN;
+ resp->open.allocator_handle = ahnd;
+
+ alloc_info("<open> [tid: %ld] fd: %d, ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", alloc_type: %u, al->refcnt: %ld->%ld"
+ ", refcnt: %d->%d\n",
+ (long) req->tid, req->open.fd, ahnd,
+ req->open.ctx,
+ req->open.vm, req->open.allocator_type,
+ refcnt - 1, refcnt, ret - 1, ret);
+ break;
+
+ case REQ_OPEN_AS:
+ /* lock first to avoid concurrent close */
+ pthread_mutex_lock(&map_mutex);
+
+ al = __allocator_find_by_handle(req->allocator_handle);
+ resp->response_type = RESP_OPEN_AS;
+
+ if (!al) {
+ alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64
+ " -> no handle\n",
+ (long) req->tid, req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ break;
+ }
+
+ if (!al->vm) {
+ alloc_info("<open as> [tid: %ld] ahnd: %" PRIx64
+ " -> only open as for <fd, vm> is possible\n",
+ (long) req->tid, req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ break;
+ }
+
+
+ al = allocator_open_as(al, req->open_as.new_vm, &ahnd);
+ refcnt = atomic_load(&al->refcount);
+ ret = atomic_load(&al->ial->refcount);
+ pthread_mutex_unlock(&map_mutex);
+
+ resp->response_type = RESP_OPEN_AS;
+ resp->open.allocator_handle = ahnd;
+
+ alloc_info("<open as> [tid: %ld] fd: %d, ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", alloc_type: %u, al->refcnt: %ld->%ld"
+ ", refcnt: %d->%d\n",
+ (long) req->tid, al->fd, ahnd,
+ al->ctx, al->vm, al->ial->type,
+ refcnt - 1, refcnt, ret - 1, ret);
+ break;
+
+ case REQ_CLOSE:
+ pthread_mutex_lock(&map_mutex);
+ al = __allocator_find_by_handle(req->allocator_handle);
+ resp->response_type = RESP_CLOSE;
+
+ if (!al) {
+ alloc_info("<close> [tid: %ld] ahnd: %" PRIx64
+ " -> no handle\n",
+ (long) req->tid, req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+ break;
+ }
+
+ resp->response_type = RESP_CLOSE;
+ ctx = al->ctx;
+ vm = al->vm;
+
+ refcnt = atomic_load(&al->refcount);
+ ret = atomic_load(&al->ial->refcount);
+ resp->close.is_empty = allocator_close(req->allocator_handle);
+ pthread_mutex_unlock(&map_mutex);
+
+ alloc_info("<close> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", is_empty: %d, al->refcount: %ld->%ld"
+ ", refcnt: %d->%d\n",
+ (long) req->tid, req->allocator_handle,
+ ctx, vm, resp->close.is_empty,
+ refcnt, refcnt - 1, ret, ret - 1);
+
+ break;
+
+ case REQ_ADDRESS_RANGE:
+ resp->response_type = RESP_ADDRESS_RANGE;
+ ial->get_address_range(ial, &start, &end);
+ resp->address_range.start = start;
+ resp->address_range.end = end;
+ alloc_info("<address range> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRId64 "\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, start, end);
+ break;
+
+ case REQ_ALLOC:
+ resp->response_type = RESP_ALLOC;
+ resp->alloc.offset = ial->alloc(ial,
+ req->alloc.handle,
+ req->alloc.size,
+ req->alloc.alignment);
+ alloc_info("<alloc> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u, handle: %u"
+ ", size: 0x%" PRIx64 ", offset: 0x%" PRIx64
+ ", alignment: 0x%" PRIx64 "\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm,
+ req->alloc.handle, req->alloc.size,
+ resp->alloc.offset, req->alloc.alignment);
+ break;
+
+ case REQ_FREE:
+ resp->response_type = RESP_FREE;
+ resp->free.freed = ial->free(ial, req->free.handle);
+ alloc_info("<free> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", handle: %u, freed: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm,
+ req->free.handle, resp->free.freed);
+ break;
+
+ case REQ_IS_ALLOCATED:
+ resp->response_type = RESP_IS_ALLOCATED;
+ allocated = ial->is_allocated(ial,
+ req->is_allocated.handle,
+ req->is_allocated.size,
+ req->is_allocated.offset);
+ resp->is_allocated.allocated = allocated;
+ alloc_info("<is allocated> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", offset: 0x%" PRIx64
+ ", allocated: %d\n", (long) req->tid,
+ req->allocator_handle, al->ctx, al->vm,
+ req->is_allocated.offset, allocated);
+ break;
+
+ case REQ_RESERVE:
+ resp->response_type = RESP_RESERVE;
+ reserved = ial->reserve(ial,
+ req->reserve.handle,
+ req->reserve.start,
+ req->reserve.end);
+ resp->reserve.reserved = reserved;
+ alloc_info("<reserve> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u, handle: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->reserve.handle,
+ req->reserve.start, req->reserve.end, reserved);
+ break;
+
+ case REQ_UNRESERVE:
+ resp->response_type = RESP_UNRESERVE;
+ unreserved = ial->unreserve(ial,
+ req->unreserve.handle,
+ req->unreserve.start,
+ req->unreserve.end);
+ resp->unreserve.unreserved = unreserved;
+ alloc_info("<unreserve> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u, handle: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", unreserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->unreserve.handle,
+ req->unreserve.start, req->unreserve.end,
+ unreserved);
+ break;
+
+ case REQ_IS_RESERVED:
+ resp->response_type = RESP_IS_RESERVED;
+ reserved = ial->is_reserved(ial,
+ req->is_reserved.start,
+ req->is_reserved.end);
+ resp->is_reserved.reserved = reserved;
+ alloc_info("<is reserved> [tid: %ld] ahnd: %" PRIx64
+ ", ctx: %u, vm: %u"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->is_reserved.start,
+ req->is_reserved.end, reserved);
+ break;
+
+ case REQ_RESERVE_IF_NOT_ALLOCATED:
+ resp->response_type = RESP_RESERVE_IF_NOT_ALLOCATED;
+ size = req->reserve.end - req->reserve.start;
+
+ allocated = ial->is_allocated(ial, req->reserve.handle,
+ size, req->reserve.start);
+ if (allocated) {
+ resp->reserve_if_not_allocated.allocated = allocated;
+ alloc_info("<reserve if not allocated> [tid: %ld] "
+ "ahnd: %" PRIx64 ", ctx: %u, vm: %u"
+ ", handle: %u, size: 0x%lx"
+ ", start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", allocated: %d, reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm, req->reserve.handle,
+ (long) size, req->reserve.start,
+ req->reserve.end, allocated, false);
+ break;
+ }
+
+ reserved = ial->reserve(ial,
+ req->reserve.handle,
+ req->reserve.start,
+ req->reserve.end);
+ resp->reserve_if_not_allocated.reserved = reserved;
+ alloc_info("<reserve if not allocated> [tid: %ld] "
+ "ahnd: %" PRIx64 ", ctx: %u, vm: %u"
+ ", handle: %u, start: 0x%" PRIx64 ", end: 0x%" PRIx64
+ ", allocated: %d, reserved: %d\n",
+ (long) req->tid, req->allocator_handle,
+ al->ctx, al->vm,
+ req->reserve.handle,
+ req->reserve.start, req->reserve.end,
+ false, reserved);
+ break;
+ }
+
+ if (req->request_type > REQ_CLOSE)
+ pthread_mutex_unlock(&ial->mutex);
+
+ return 0;
+ }
+
+ ret = send_req_recv_resp(channel, req, resp);
+
+ if (ret < 0)
+ exit(0);
+
+ return ret;
+}
+
+static void *allocator_thread_loop(void *data)
+{
+ struct alloc_req req;
+ struct alloc_resp resp;
+ int ret;
+ (void) data;
+
+ alloc_info("Allocator pid: %ld, tid: %ld\n",
+ (long) allocator_pid, (long) gettid());
+ alloc_info("Entering allocator loop\n");
+
+ while (1) {
+ ret = recv_req(channel, &req);
+
+ if (ret == -1) {
+ igt_warn("Error receiving request in thread, ret = %d [%s]\n",
+ ret, strerror(errno));
+ igt_waitchildren_timeout(1, "Stopping children, error receiving request\n");
+ return (void *) -1;
+ }
+
+ /* Fake message to stop the thread */
+ if (req.request_type == REQ_STOP) {
+ alloc_info("<stop request>\n");
+ break;
+ }
+
+ ret = handle_request(&req, &resp);
+ if (ret) {
+ igt_warn("Error handling request in thread, ret = %d [%s]\n",
+ ret, strerror(errno));
+ break;
+ }
+
+ ret = send_resp(channel, req.tid, &resp);
+ if (ret) {
+ igt_warn("Error sending response in thread, ret = %d [%s]\n",
+ ret, strerror(errno));
+
+ igt_waitchildren_timeout(1, "Stopping children, error sending response\n");
+ return (void *) -1;
+ }
+ }
+
+ return NULL;
+}
+
+/**
+ * intel_allocator_multiprocess_start:
+ *
+ * Function turns on intel_allocator multiprocess mode what means
+ * all allocations from children processes are performed in a separate thread
+ * within main igt process. Children are aware of the situation and use
+ * some interprocess communication channel to send/receive messages
+ * (open, close, alloc, free, ...) to/from allocator thread.
+ *
+ * Must be used when you want to use an allocator in non single-process code.
+ * All allocations in threads spawned in main igt process are handled by
+ * mutexing, not by sending/receiving messages to/from allocator thread.
+ *
+ * Note. This destroys all previously created allocators and theirs content.
+ */
+void intel_allocator_multiprocess_start(void)
+{
+ alloc_info("allocator multiprocess start\n");
+
+ igt_assert_f(child_pid == -1,
+ "Allocator thread can be spawned only in main IGT process\n");
+ intel_allocator_init();
+
+ multiprocess = true;
+ channel->init(channel);
+
+ pthread_create(&allocator_thread, NULL,
+ allocator_thread_loop, NULL);
+}
+
+/**
+ * intel_allocator_multiprocess_stop:
+ *
+ * Function turns off intel_allocator multiprocess mode what means
+ * stopping allocator thread and deinitializing its data.
+ */
+void intel_allocator_multiprocess_stop(void)
+{
+ alloc_info("allocator multiprocess stop\n");
+
+ if (multiprocess) {
+ send_alloc_stop(channel);
+ /* Deinit, this should stop all blocked syscalls, if any */
+ channel->deinit(channel);
+ pthread_join(allocator_thread, NULL);
+ /* But we're not sure does child will stuck */
+ igt_waitchildren_timeout(5, "Stopping children");
+ multiprocess = false;
+ }
+}
+
+static uint64_t __intel_allocator_open_full(int fd, uint32_t ctx,
+ uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy)
+{
+ struct alloc_req req = { .request_type = REQ_OPEN,
+ .open.fd = fd,
+ .open.ctx = ctx,
+ .open.vm = vm,
+ .open.start = start,
+ .open.end = end,
+ .open.allocator_type = allocator_type,
+ .open.allocator_strategy = strategy };
+ struct alloc_resp resp;
+
+ /* Get child_tid only once at open() */
+ if (child_tid == -1)
+ child_tid = gettid();
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.open.allocator_handle);
+ igt_assert(resp.response_type == RESP_OPEN);
+
+ return resp.open.allocator_handle;
+}
+
+/**
+ * intel_allocator_open_full:
+ * @fd: i915 descriptor
+ * @ctx: context
+ * @start: address of the beginning
+ * @end: address of the end
+ * @allocator_type: one of INTEL_ALLOCATOR_* define
+ * @strategy: passed to the allocator to define the strategy (like order
+ * of allocation, see notes below).
+ *
+ * Function opens an allocator instance within <@start, @end) vm for given
+ * @fd and @ctx and returns its handle. If the allocator for such pair
+ * doesn't exist it is created with refcount = 1.
+ * Parallel opens returns same handle bumping its refcount.
+ *
+ * Returns: unique handle to the currently opened allocator.
+ *
+ * Notes:
+ * Strategy is generally used internally by the underlying allocator:
+ *
+ * For SIMPLE allocator:
+ * - ALLOC_STRATEGY_HIGH_TO_LOW means topmost addresses are allocated first,
+ * - ALLOC_STRATEGY_LOW_TO_HIGH opposite, allocation starts from lowest
+ * addresses.
+ *
+ * For RANDOM allocator:
+ * - none of strategy is currently implemented.
+ */
+uint64_t intel_allocator_open_full(int fd, uint32_t ctx,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy)
+{
+ return __intel_allocator_open_full(fd, ctx, 0, start, end,
+ allocator_type, strategy);
+}
+
+uint64_t intel_allocator_open_vm_full(int fd, uint32_t vm,
+ uint64_t start, uint64_t end,
+ uint8_t allocator_type,
+ enum allocator_strategy strategy)
+{
+ igt_assert(vm != 0);
+ return __intel_allocator_open_full(fd, 0, vm, start, end,
+ allocator_type, strategy);
+}
+
+/**
+ * intel_allocator_open:
+ * @fd: i915 descriptor
+ * @ctx: context
+ * @allocator_type: one of INTEL_ALLOCATOR_* define
+ *
+ * Function opens an allocator instance for given @fd and @ctx and returns
+ * its handle. If the allocator for such pair doesn't exist it is created
+ * with refcount = 1. Parallel opens returns same handle bumping its refcount.
+ *
+ * Returns: unique handle to the currently opened allocator.
+ *
+ * Notes: we pass ALLOC_STRATEGY_HIGH_TO_LOW as default, playing with higher
+ * addresses makes easier to find addressing issues (like passing non-canonical
+ * offsets, which won't be catched unless 47-bit is set).
+ */
+uint64_t intel_allocator_open(int fd, uint32_t ctx, uint8_t allocator_type)
+{
+ return intel_allocator_open_full(fd, ctx, 0, 0, allocator_type,
+ ALLOC_STRATEGY_HIGH_TO_LOW);
+}
+
+uint64_t intel_allocator_open_vm(int fd, uint32_t vm, uint8_t allocator_type)
+{
+ return intel_allocator_open_vm_full(fd, vm, 0, 0, allocator_type,
+ ALLOC_STRATEGY_HIGH_TO_LOW);
+}
+
+uint64_t intel_allocator_open_vm_as(uint64_t allocator_handle, uint32_t new_vm)
+{
+ struct alloc_req req = { .request_type = REQ_OPEN_AS,
+ .allocator_handle = allocator_handle,
+ .open_as.new_vm = new_vm };
+ struct alloc_resp resp;
+
+ /* Get child_tid only once at open() */
+ if (child_tid == -1)
+ child_tid = gettid();
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.open_as.allocator_handle);
+ igt_assert(resp.response_type == RESP_OPEN_AS);
+
+ return resp.open.allocator_handle;
+}
+
+/**
+ * intel_allocator_close:
+ * @allocator_handle: handle to the allocator that will be closed
+ *
+ * Function decreases an allocator refcount for the given @handle.
+ * When refcount reaches zero allocator is closed (destroyed) and all
+ * allocated / reserved areas are freed.
+ *
+ * Returns: true if closed allocator was empty, false otherwise.
+ */
+bool intel_allocator_close(uint64_t allocator_handle)
+{
+ struct alloc_req req = { .request_type = REQ_CLOSE,
+ .allocator_handle = allocator_handle };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_CLOSE);
+
+ return resp.close.is_empty;
+}
+
+/**
+ * intel_allocator_get_address_range:
+ * @allocator_handle: handle to an allocator
+ * @startp: pointer to the variable where function writes starting offset
+ * @endp: pointer to the variable where function writes ending offset
+ *
+ * Function fills @startp, @endp with respectively, starting and ending offset
+ * of the allocator working virtual address space range.
+ *
+ * Note. Allocators working ranges can differ depending on the device or
+ * the allocator type so before reserving a specific offset a good practise
+ * is to ensure that address is between accepted range.
+ */
+void intel_allocator_get_address_range(uint64_t allocator_handle,
+ uint64_t *startp, uint64_t *endp)
+{
+ struct alloc_req req = { .request_type = REQ_ADDRESS_RANGE,
+ .allocator_handle = allocator_handle };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_ADDRESS_RANGE);
+
+ if (startp)
+ *startp = resp.address_range.start;
+
+ if (endp)
+ *endp = resp.address_range.end;
+}
+
+/**
+ * __intel_allocator_alloc:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @alignment: determines object alignment
+ *
+ * Function finds and returns the most suitable offset with given @alignment
+ * for an object with @size identified by the @handle.
+ *
+ * Returns: currently assigned address for a given object. If an object was
+ * already allocated returns same address. If allocator can't find suitable
+ * range returns ALLOC_INVALID_ADDRESS.
+ */
+uint64_t __intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t alignment)
+{
+ struct alloc_req req = { .request_type = REQ_ALLOC,
+ .allocator_handle = allocator_handle,
+ .alloc.handle = handle,
+ .alloc.size = size,
+ .alloc.alignment = alignment };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_ALLOC);
+
+ return resp.alloc.offset;
+}
+
+/**
+ * intel_allocator_alloc:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @alignment: determines object alignment
+ *
+ * Same as __intel_allocator_alloc() but asserts if allocator can't return
+ * valid address.
+ */
+uint64_t intel_allocator_alloc(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t alignment)
+{
+ uint64_t offset;
+
+ offset = __intel_allocator_alloc(allocator_handle, handle,
+ size, alignment);
+ igt_assert(offset != ALLOC_INVALID_ADDRESS);
+
+ return offset;
+}
+
+/**
+ * intel_allocator_free:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object to be freed
+ *
+ * Function free object identified by the @handle in allocator what makes it
+ * offset again allocable.
+ *
+ * Note. Reserved objects can only be freed by an #intel_allocator_unreserve
+ * function.
+ *
+ * Returns: true if the object was successfully freed, otherwise false.
+ */
+bool intel_allocator_free(uint64_t allocator_handle, uint32_t handle)
+{
+ struct alloc_req req = { .request_type = REQ_FREE,
+ .allocator_handle = allocator_handle,
+ .free.handle = handle };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_FREE);
+
+ return resp.free.freed;
+}
+
+/**
+ * intel_allocator_is_allocated:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function checks whether the object identified by the @handle and @size
+ * is allocated at the @offset.
+ *
+ * Returns: true if the object is currently allocated at the @offset,
+ * otherwise false.
+ */
+bool intel_allocator_is_allocated(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_IS_ALLOCATED,
+ .allocator_handle = allocator_handle,
+ .is_allocated.handle = handle,
+ .is_allocated.size = size,
+ .is_allocated.offset = offset };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_IS_ALLOCATED);
+
+ return resp.is_allocated.allocated;
+}
+
+/**
+ * intel_allocator_reserve:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function reserves space that starts at the @offset and has @size.
+ * Optionally we can pass @handle to mark that space is for a specific
+ * object, otherwise pass -1.
+ *
+ * Note. Reserved space is identified by offset and size, not a handle.
+ * So an object can have multiple reserved spaces with its handle.
+ *
+ * Returns: true if space is successfully reserved, otherwise false.
+ */
+bool intel_allocator_reserve(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_RESERVE,
+ .allocator_handle = allocator_handle,
+ .reserve.handle = handle,
+ .reserve.start = offset,
+ .reserve.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_RESERVE);
+
+ return resp.reserve.reserved;
+}
+
+/**
+ * intel_allocator_unreserve:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function unreserves space that starts at the @offset, @size and @handle.
+ *
+ * Note. @handle, @size and @offset have to match those used in reservation.
+ * i.e. check with the same offset but even smaller size will fail.
+ *
+ * Returns: true if the space is successfully unreserved, otherwise false.
+ */
+bool intel_allocator_unreserve(uint64_t allocator_handle, uint32_t handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_UNRESERVE,
+ .allocator_handle = allocator_handle,
+ .unreserve.handle = handle,
+ .unreserve.start = offset,
+ .unreserve.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_UNRESERVE);
+
+ return resp.unreserve.unreserved;
+}
+
+/**
+ * intel_allocator_is_reserved:
+ * @allocator_handle: handle to an allocator
+ * @size: size of an object
+ * @offset: address of an object
+ *
+ * Function checks whether space starting at the @offset and @size is
+ * currently under reservation.
+ *
+ * Note. @size and @offset have to match those used in reservation,
+ * i.e. check with the same offset but even smaller size will fail.
+ *
+ * Returns: true if space is reserved, othwerise false.
+ */
+bool intel_allocator_is_reserved(uint64_t allocator_handle,
+ uint64_t size, uint64_t offset)
+{
+ struct alloc_req req = { .request_type = REQ_IS_RESERVED,
+ .allocator_handle = allocator_handle,
+ .is_reserved.start = offset,
+ .is_reserved.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_IS_RESERVED);
+
+ return resp.is_reserved.reserved;
+}
+
+/**
+ * intel_allocator_reserve_if_not_allocated:
+ * @allocator_handle: handle to an allocator
+ * @handle: handle to an object
+ * @size: size of an object
+ * @offset: address of an object
+ * @is_allocatedp: if not NULL function writes there object allocation status
+ * (true/false)
+ *
+ * Function checks whether the object identified by the @handle and @size
+ * is allocated at the @offset and writes the result to @is_allocatedp.
+ * If it's not it reserves it at the given @offset.
+ *
+ * Returns: true if the space for an object was reserved, otherwise false.
+ */
+bool intel_allocator_reserve_if_not_allocated(uint64_t allocator_handle,
+ uint32_t handle,
+ uint64_t size, uint64_t offset,
+ bool *is_allocatedp)
+{
+ struct alloc_req req = { .request_type = REQ_RESERVE_IF_NOT_ALLOCATED,
+ .allocator_handle = allocator_handle,
+ .reserve.handle = handle,
+ .reserve.start = offset,
+ .reserve.end = offset + size };
+ struct alloc_resp resp;
+
+ igt_assert(handle_request(&req, &resp) == 0);
+ igt_assert(resp.response_type == RESP_RESERVE_IF_NOT_ALLOCATED);
+
+ if (is_allocatedp)
+ *is_allocatedp = resp.reserve_if_not_allocated.allocated;
+
+ return resp.reserve_if_not_allocated.reserved;
+}
+
+/**
+ * intel_allocator_print:
+ * @allocator_handle: handle to an allocator
+ *
+ * Function prints statistics and content of the allocator.
+ * Mainly for debugging purposes.
+ *
+ * Note. Printing possible only in the main process.
+ **/
+void intel_allocator_print(uint64_t allocator_handle)
+{
+ igt_assert(allocator_handle);
+
+ if (!multiprocess || is_same_process()) {
+ struct allocator *al;
+
+ al = __allocator_find_by_handle(allocator_handle);
+ pthread_mutex_lock(&map_mutex);
+ al->ial->print(al->ial, true);
+ pthread_mutex_unlock(&map_mutex);
+ } else {
+ igt_warn("Print stats is in main process only\n");
+ }
+}
+
+static int equal_handles(const void *key1, const void *key2)
+{
+ const struct handle_entry *h1 = key1, *h2 = key2;
+
+ alloc_debug("h1: %llx, h2: %llx\n",
+ (long long) h1->handle, (long long) h2->handle);
+
+ return h1->handle == h2->handle;
+}
+
+static int equal_ctx(const void *key1, const void *key2)
+{
+ const struct allocator *a1 = key1, *a2 = key2;
+
+ alloc_debug("a1: <fd: %d, ctx: %u>, a2 <fd: %d, ctx: %u>\n",
+ a1->fd, a1->ctx, a2->fd, a2->ctx);
+
+ return a1->fd == a2->fd && a1->ctx == a2->ctx;
+}
+
+static int equal_vm(const void *key1, const void *key2)
+{
+ const struct allocator *a1 = key1, *a2 = key2;
+
+ alloc_debug("a1: <fd: %d, vm: %u>, a2 <fd: %d, vm: %u>\n",
+ a1->fd, a1->vm, a2->fd, a2->vm);
+
+ return a1->fd == a2->fd && a1->vm == a2->vm;
+}
+
+/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */
+#define GOLDEN_RATIO_PRIME_32 0x9e370001UL
+
+static inline uint32_t hash_handles(const void *val)
+{
+ uint32_t hash = ((struct handle_entry *) val)->handle;
+
+ hash = hash * GOLDEN_RATIO_PRIME_32;
+ return hash;
+}
+
+static inline uint32_t hash_instance(const void *val)
+{
+ uint64_t hash = ((struct allocator *) val)->fd;
+
+ hash = hash * GOLDEN_RATIO_PRIME_32;
+ return hash;
+}
+
+static void __free_maps(struct igt_map *map, bool close_allocators)
+{
+ struct igt_map_entry *pos;
+ const struct handle_entry *h;
+
+ if (!map)
+ return;
+
+ if (close_allocators)
+ igt_map_foreach(map, pos) {
+ h = pos->key;
+ allocator_close(h->handle);
+ }
+
+ igt_map_destroy(map, map_entry_free_func);
+}
+
+/**
+ * intel_allocator_init:
+ *
+ * Function initializes the allocators infrastructure. The second call will
+ * override current infra and destroy existing there allocators. It is called
+ * in igt_constructor.
+ **/
+void intel_allocator_init(void)
+{
+ alloc_info("Prepare an allocator infrastructure\n");
+
+ allocator_pid = getpid();
+ alloc_info("Allocator pid: %ld\n", (long) allocator_pid);
+
+ __free_maps(handles, true);
+ __free_maps(ctx_map, false);
+ __free_maps(vm_map, false);
+
+ atomic_init(&next_handle, 1);
+ handles = igt_map_create(hash_handles, equal_handles);
+ ctx_map = igt_map_create(hash_instance, equal_ctx);
+ vm_map = igt_map_create(hash_instance, equal_vm);
+ igt_assert(handles && ctx_map && vm_map);
+
+ channel = intel_allocator_get_msgchannel(CHANNEL_SYSVIPC_MSGQUEUE);
+}
+
+igt_constructor {
+ intel_allocator_init();
+}