1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/*
* Copyright © 2015 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Tiago Vignatti
*/
/** @file prime_mmap_coherency.c
*
* TODO: need to show the need for prime_sync_end().
*/
#include "igt.h"
IGT_TEST_DESCRIPTION("Test dma-buf mmap on !llc platforms mostly and provoke"
" coherency bugs so we know for sure where we need the sync ioctls.");
int fd;
static drm_intel_bufmgr *bufmgr;
struct intel_batchbuffer *batch;
static int width = 1024, height = 1024;
/*
* Exercises the need for read flush:
* 1. create a BO and write '0's, in GTT domain.
* 2. read BO using the dma-buf CPU mmap.
* 3. write '1's, in GTT domain.
* 4. read again through the mapped dma-buf.
*/
static int test_read_flush(void)
{
drm_intel_bo *bo_1;
drm_intel_bo *bo_2;
uint32_t *ptr_cpu;
uint32_t *ptr_gtt;
int dma_buf_fd, i;
int stale = 0;
bo_1 = drm_intel_bo_alloc(bufmgr, "BO 1", width * height * 4, 4096);
/* STEP #1: put the BO 1 in GTT domain. We use the blitter to copy and fill
* zeros to BO 1, so commands will be submitted and likely to place BO 1 in
* the GTT domain. */
bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096);
intel_copy_bo(batch, bo_1, bo_2, width * height);
drm_intel_bo_unreference(bo_2);
/* STEP #2: read BO 1 using the dma-buf CPU mmap. This dirties the CPU caches. */
dma_buf_fd = prime_handle_to_fd_for_mmap(fd, bo_1->handle);
/* STEP #3: write 0x11 into BO 1. */
bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096);
ptr_gtt = gem_mmap__gtt(fd, bo_2->handle, width * height, PROT_READ | PROT_WRITE);
gem_set_domain(fd, bo_2->handle,
I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
memset(ptr_gtt, 0xc5, width * height);
munmap(ptr_gtt, width * height);
ptr_cpu = mmap(NULL, width * height, PROT_READ,
MAP_SHARED, dma_buf_fd, 0);
igt_assert(ptr_cpu != MAP_FAILED);
prime_sync_start(dma_buf_fd, false);
for (i = 0; i < (width * height) / 4; i++)
igt_assert_eq(ptr_cpu[i], 0);
prime_sync_end(dma_buf_fd, false);
intel_copy_bo(batch, bo_1, bo_2, width * height);
drm_intel_bo_unreference(bo_2);
/* STEP #4: read again using the CPU mmap. Doing #1 before #3 makes sure we
* don't do a full CPU cache flush in step #3 again. That makes sure all the
* stale cachelines from step #2 survive (mostly, a few will be evicted)
* until we try to read them again in step #4. This behavior could be fixed
* by flush CPU read right before accessing the CPU pointer */
prime_sync_start(dma_buf_fd, false);
for (i = 0; i < (width * height) / 4; i++)
if (ptr_cpu[i] != 0xc5c5c5c5)
stale++;
prime_sync_end(dma_buf_fd, false);
drm_intel_bo_unreference(bo_1);
munmap(ptr_cpu, width * height);
close(dma_buf_fd);
return stale;
}
/*
* Exercises the need for write flush:
* 1. create BO 1 and write '0's, in GTT domain.
* 2. write '1's into BO 1 using the dma-buf CPU mmap.
* 3. copy BO 1 to new BO 2, in GTT domain.
* 4. read via dma-buf mmap BO 2.
*/
static int test_write_flush(void)
{
drm_intel_bo *bo_1;
drm_intel_bo *bo_2;
uint32_t *ptr_cpu;
uint32_t *ptr2_cpu;
int dma_buf_fd, dma_buf2_fd, i;
int stale = 0;
bo_1 = drm_intel_bo_alloc(bufmgr, "BO 1", width * height * 4, 4096);
/* STEP #1: Put the BO 1 in GTT domain. We use the blitter to copy and fill
* zeros to BO 1, so commands will be submitted and likely to place BO 1 in
* the GTT domain. */
bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096);
intel_copy_bo(batch, bo_1, bo_2, width * height);
drm_intel_bo_unreference(bo_2);
/* STEP #2: Write '1's into BO 1 using the dma-buf CPU mmap. */
dma_buf_fd = prime_handle_to_fd_for_mmap(fd, bo_1->handle);
igt_skip_on(errno == EINVAL);
ptr_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE,
MAP_SHARED, dma_buf_fd, 0);
igt_assert(ptr_cpu != MAP_FAILED);
/* This is the main point of this test: !llc hw requires a cache write
* flush right here (explained in step #4). */
prime_sync_start(dma_buf_fd, true);
memset(ptr_cpu, 0x11, width * height);
prime_sync_end(dma_buf_fd, true);
/* STEP #3: Copy BO 1 into BO 2, using blitter. */
bo_2 = drm_intel_bo_alloc(bufmgr, "BO 2", width * height * 4, 4096);
intel_copy_bo(batch, bo_2, bo_1, width * height);
/* STEP #4: compare BO 2 against written BO 1. In !llc hardware, there
* should be some cache lines that didn't get flushed out and are still 0,
* requiring cache flush before the write in step 2. */
dma_buf2_fd = prime_handle_to_fd_for_mmap(fd, bo_2->handle);
igt_skip_on(errno == EINVAL);
ptr2_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE,
MAP_SHARED, dma_buf2_fd, 0);
igt_assert(ptr2_cpu != MAP_FAILED);
prime_sync_start(dma_buf2_fd, false);
for (i = 0; i < (width * height) / 4; i++)
if (ptr2_cpu[i] != 0x11111111)
stale++;
prime_sync_end(dma_buf2_fd, false);
drm_intel_bo_unreference(bo_1);
drm_intel_bo_unreference(bo_2);
munmap(ptr_cpu, width * height);
close(dma_buf2_fd);
close(dma_buf_fd);
return stale;
}
static void blit_and_cmp(void)
{
drm_intel_bo *bo_1;
drm_intel_bo *bo_2;
uint32_t *ptr_cpu;
uint32_t *ptr2_cpu;
int dma_buf_fd, dma_buf2_fd, i;
int local_fd;
drm_intel_bufmgr *local_bufmgr;
struct intel_batchbuffer *local_batch;
/* recreate process local variables */
local_fd = drm_open_driver(DRIVER_INTEL);
local_bufmgr = drm_intel_bufmgr_gem_init(local_fd, 4096);
igt_assert(local_bufmgr);
local_batch = intel_batchbuffer_alloc(local_bufmgr, intel_get_drm_devid(local_fd));
igt_assert(local_batch);
bo_1 = drm_intel_bo_alloc(local_bufmgr, "BO 1", width * height * 4, 4096);
dma_buf_fd = prime_handle_to_fd_for_mmap(local_fd, bo_1->handle);
igt_skip_on(errno == EINVAL);
ptr_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE,
MAP_SHARED, dma_buf_fd, 0);
igt_assert(ptr_cpu != MAP_FAILED);
bo_2 = drm_intel_bo_alloc(local_bufmgr, "BO 2", width * height * 4, 4096);
dma_buf2_fd = prime_handle_to_fd_for_mmap(local_fd, bo_2->handle);
ptr2_cpu = mmap(NULL, width * height, PROT_READ | PROT_WRITE,
MAP_SHARED, dma_buf2_fd, 0);
igt_assert(ptr2_cpu != MAP_FAILED);
/* Fill up BO 1 with '1's and BO 2 with '0's */
prime_sync_start(dma_buf_fd, true);
memset(ptr_cpu, 0x11, width * height);
prime_sync_end(dma_buf_fd, true);
prime_sync_start(dma_buf2_fd, true);
memset(ptr2_cpu, 0x00, width * height);
prime_sync_end(dma_buf2_fd, true);
/* Copy BO 1 into BO 2, using blitter. */
intel_copy_bo(local_batch, bo_2, bo_1, width * height);
usleep(0); /* let someone else claim the mutex */
/* Compare BOs. If prime_sync_* were executed properly, the caches
* should be synced. */
prime_sync_start(dma_buf2_fd, false);
for (i = 0; i < (width * height) / 4; i++)
igt_fail_on_f(ptr2_cpu[i] != 0x11111111, "Found 0x%08x at offset 0x%08x\n", ptr2_cpu[i], i);
prime_sync_end(dma_buf2_fd, false);
drm_intel_bo_unreference(bo_1);
drm_intel_bo_unreference(bo_2);
munmap(ptr_cpu, width * height);
munmap(ptr2_cpu, width * height);
close(dma_buf_fd);
close(dma_buf2_fd);
intel_batchbuffer_free(local_batch);
drm_intel_bufmgr_destroy(local_bufmgr);
close(local_fd);
}
/*
* Constantly interrupt concurrent blits to stress out prime_sync_* and make
* sure these ioctl errors are handled accordingly.
*
* Important to note that in case of failure (e.g. in a case where the ioctl
* wouldn't try again in a return error) this test does not reliably catch the
* problem with 100% of accuracy.
*/
static void test_ioctl_errors(void)
{
int ncpus = sysconf(_SC_NPROCESSORS_ONLN);
/* Ensure we can do at least one child */
intel_require_memory(2, width*height*4, CHECK_RAM);
for (int num_children = 1; num_children <= 8 *ncpus; num_children <<= 1) {
uint64_t required, total;
igt_info("Spawing %d interruptible children\n", num_children);
if (!__intel_check_memory(2*num_children,
width*height*4,
CHECK_RAM,
&required, &total)) {
igt_debug("Estimated that we need %'lluMiB for test, but only have %'lluMiB\n",
(long long)(required >> 20),
(long long)(total >> 20));
break;
}
igt_fork(child, num_children)
igt_while_interruptible(true) blit_and_cmp();
igt_waitchildren();
}
}
int main(int argc, char **argv)
{
igt_subtest_init(argc, argv);
igt_fixture {
fd = drm_open_driver(DRIVER_INTEL);
igt_require_gem(fd);
bufmgr = drm_intel_bufmgr_gem_init(fd, 4096);
batch = intel_batchbuffer_alloc(bufmgr, intel_get_drm_devid(fd));
}
/* Cache coherency and the eviction are pretty much unpredictable, so
* reproducing boils down to trial and error to hit different scenarios.
* TODO: We may want to improve tests a bit by picking random subranges. */
igt_subtest("read") {
igt_until_timeout(5) {
int stale = test_read_flush();
igt_fail_on_f(stale,
"num of stale cache lines %d\n", stale);
}
}
igt_subtest("write") {
igt_until_timeout(5) {
int stale = test_write_flush();
igt_fail_on_f(stale,
"num of stale cache lines %d\n", stale);
}
}
igt_subtest("ioctl-errors") {
igt_info("exercising concurrent blit to get ioctl errors\n");
test_ioctl_errors();
}
igt_fixture {
intel_batchbuffer_free(batch);
drm_intel_bufmgr_destroy(bufmgr);
close(fd);
}
igt_exit();
}
|