summaryrefslogtreecommitdiff
path: root/Documentation/nvmem/nvmem.txt
diff options
context:
space:
mode:
authorSrinivas Kandagatla <srinivas.kandagatla@linaro.org>2015-07-27 12:14:14 +0100
committerGreg Kroah-Hartman <gregkh@linuxfoundation.org>2015-08-05 13:43:45 -0700
commit354ebb541dfa37a83395e5a9b7d68c34f80fffc0 (patch)
tree45ce85488cc74a71e8003f1abb57d1c550ae2e9e /Documentation/nvmem/nvmem.txt
parent2af38ab572b031a4111f01153cc020b1038b427b (diff)
Documentation: nvmem: add nvmem api level and how-to doc
This patch add basic how-to and api summary documentation for simple NVMEM framework. Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org> Tested-by: Philipp Zabel <p.zabel@pengutronix.de> Tested-by: Rajendra Nayak <rnayak@codeaurora.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Diffstat (limited to 'Documentation/nvmem/nvmem.txt')
-rw-r--r--Documentation/nvmem/nvmem.txt152
1 files changed, 152 insertions, 0 deletions
diff --git a/Documentation/nvmem/nvmem.txt b/Documentation/nvmem/nvmem.txt
new file mode 100644
index 000000000000..dbd40d879239
--- /dev/null
+++ b/Documentation/nvmem/nvmem.txt
@@ -0,0 +1,152 @@
+ NVMEM SUBSYSTEM
+ Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
+
+This document explains the NVMEM Framework along with the APIs provided,
+and how to use it.
+
+1. Introduction
+===============
+*NVMEM* is the abbreviation for Non Volatile Memory layer. It is used to
+retrieve configuration of SOC or Device specific data from non volatile
+memories like eeprom, efuses and so on.
+
+Before this framework existed, NVMEM drivers like eeprom were stored in
+drivers/misc, where they all had to duplicate pretty much the same code to
+register a sysfs file, allow in-kernel users to access the content of the
+devices they were driving, etc.
+
+This was also a problem as far as other in-kernel users were involved, since
+the solutions used were pretty much different from one driver to another, there
+was a rather big abstraction leak.
+
+This framework aims at solve these problems. It also introduces DT
+representation for consumer devices to go get the data they require (MAC
+Addresses, SoC/Revision ID, part numbers, and so on) from the NVMEMs. This
+framework is based on regmap, so that most of the abstraction available in
+regmap can be reused, across multiple types of buses.
+
+NVMEM Providers
++++++++++++++++
+
+NVMEM provider refers to an entity that implements methods to initialize, read
+and write the non-volatile memory.
+
+2. Registering/Unregistering the NVMEM provider
+===============================================
+
+A NVMEM provider can register with NVMEM core by supplying relevant
+nvmem configuration to nvmem_register(), on success core would return a valid
+nvmem_device pointer.
+
+nvmem_unregister(nvmem) is used to unregister a previously registered provider.
+
+For example, a simple qfprom case:
+
+static struct nvmem_config econfig = {
+ .name = "qfprom",
+ .owner = THIS_MODULE,
+};
+
+static int qfprom_probe(struct platform_device *pdev)
+{
+ ...
+ econfig.dev = &pdev->dev;
+ nvmem = nvmem_register(&econfig);
+ ...
+}
+
+It is mandatory that the NVMEM provider has a regmap associated with its
+struct device. Failure to do would return error code from nvmem_register().
+
+NVMEM Consumers
++++++++++++++++
+
+NVMEM consumers are the entities which make use of the NVMEM provider to
+read from and to NVMEM.
+
+3. NVMEM cell based consumer APIs
+=================================
+
+NVMEM cells are the data entries/fields in the NVMEM.
+The NVMEM framework provides 3 APIs to read/write NVMEM cells.
+
+struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *name);
+struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *name);
+
+void nvmem_cell_put(struct nvmem_cell *cell);
+void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+
+void *nvmem_cell_read(struct nvmem_cell *cell, ssize_t *len);
+int nvmem_cell_write(struct nvmem_cell *cell, void *buf, ssize_t len);
+
+*nvmem_cell_get() apis will get a reference to nvmem cell for a given id,
+and nvmem_cell_read/write() can then read or write to the cell.
+Once the usage of the cell is finished the consumer should call *nvmem_cell_put()
+to free all the allocation memory for the cell.
+
+4. Direct NVMEM device based consumer APIs
+==========================================
+
+In some instances it is necessary to directly read/write the NVMEM.
+To facilitate such consumers NVMEM framework provides below apis.
+
+struct nvmem_device *nvmem_device_get(struct device *dev, const char *name);
+struct nvmem_device *devm_nvmem_device_get(struct device *dev,
+ const char *name);
+void nvmem_device_put(struct nvmem_device *nvmem);
+int nvmem_device_read(struct nvmem_device *nvmem, unsigned int offset,
+ size_t bytes, void *buf);
+int nvmem_device_write(struct nvmem_device *nvmem, unsigned int offset,
+ size_t bytes, void *buf);
+int nvmem_device_cell_read(struct nvmem_device *nvmem,
+ struct nvmem_cell_info *info, void *buf);
+int nvmem_device_cell_write(struct nvmem_device *nvmem,
+ struct nvmem_cell_info *info, void *buf);
+
+Before the consumers can read/write NVMEM directly, it should get hold
+of nvmem_controller from one of the *nvmem_device_get() api.
+
+The difference between these apis and cell based apis is that these apis always
+take nvmem_device as parameter.
+
+5. Releasing a reference to the NVMEM
+=====================================
+
+When a consumers no longer needs the NVMEM, it has to release the reference
+to the NVMEM it has obtained using the APIs mentioned in the above section.
+The NVMEM framework provides 2 APIs to release a reference to the NVMEM.
+
+void nvmem_cell_put(struct nvmem_cell *cell);
+void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell);
+void nvmem_device_put(struct nvmem_device *nvmem);
+void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem);
+
+Both these APIs are used to release a reference to the NVMEM and
+devm_nvmem_cell_put and devm_nvmem_device_put destroys the devres associated
+with this NVMEM.
+
+Userspace
++++++++++
+
+6. Userspace binary interface
+==============================
+
+Userspace can read/write the raw NVMEM file located at
+/sys/bus/nvmem/devices/*/nvmem
+
+ex:
+
+hexdump /sys/bus/nvmem/devices/qfprom0/nvmem
+
+0000000 0000 0000 0000 0000 0000 0000 0000 0000
+*
+00000a0 db10 2240 0000 e000 0c00 0c00 0000 0c00
+0000000 0000 0000 0000 0000 0000 0000 0000 0000
+...
+*
+0001000
+
+7. DeviceTree Binding
+=====================
+
+See Documentation/devicetree/bindings/nvmem/nvmem.txt