1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
#
# Generic thermal sysfs drivers configuration
#
menuconfig THERMAL
tristate "Generic Thermal sysfs driver"
help
Generic Thermal Sysfs driver offers a generic mechanism for
thermal management. Usually it's made up of one or more thermal
zone and cooling device.
Each thermal zone contains its own temperature, trip points,
cooling devices.
All platforms with ACPI thermal support can use this driver.
If you want this support, you should say Y or M here.
if THERMAL
config THERMAL_HWMON
bool
prompt "Expose thermal sensors as hwmon device"
depends on HWMON=y || HWMON=THERMAL
default y
help
In case a sensor is registered with the thermal
framework, this option will also register it
as a hwmon. The sensor will then have the common
hwmon sysfs interface.
Say 'Y' here if you want all thermal sensors to
have hwmon sysfs interface too.
config THERMAL_OF
bool
prompt "APIs to parse thermal data out of device tree"
depends on OF
default y
help
This options provides helpers to add the support to
read and parse thermal data definitions out of the
device tree blob.
Say 'Y' here if you need to build thermal infrastructure
based on device tree.
choice
prompt "Default Thermal governor"
default THERMAL_DEFAULT_GOV_STEP_WISE
help
This option sets which thermal governor shall be loaded at
startup. If in doubt, select 'step_wise'.
config THERMAL_DEFAULT_GOV_STEP_WISE
bool "step_wise"
select THERMAL_GOV_STEP_WISE
help
Use the step_wise governor as default. This throttles the
devices one step at a time.
config THERMAL_DEFAULT_GOV_FAIR_SHARE
bool "fair_share"
select THERMAL_GOV_FAIR_SHARE
help
Use the fair_share governor as default. This throttles the
devices based on their 'contribution' to a zone. The
contribution should be provided through platform data.
config THERMAL_DEFAULT_GOV_USER_SPACE
bool "user_space"
select THERMAL_GOV_USER_SPACE
help
Select this if you want to let the user space manage the
platform thermals.
endchoice
config THERMAL_GOV_FAIR_SHARE
bool "Fair-share thermal governor"
help
Enable this to manage platform thermals using fair-share governor.
config THERMAL_GOV_STEP_WISE
bool "Step_wise thermal governor"
help
Enable this to manage platform thermals using a simple linear
governor.
config THERMAL_GOV_USER_SPACE
bool "User_space thermal governor"
help
Enable this to let the user space manage the platform thermals.
config CPU_THERMAL
bool "generic cpu cooling support"
depends on CPU_FREQ
depends on THERMAL_OF
help
This implements the generic cpu cooling mechanism through frequency
reduction. An ACPI version of this already exists
(drivers/acpi/processor_thermal.c).
This will be useful for platforms using the generic thermal interface
and not the ACPI interface.
If you want this support, you should say Y here.
config THERMAL_EMULATION
bool "Thermal emulation mode support"
help
Enable this option to make a emul_temp sysfs node in thermal zone
directory to support temperature emulation. With emulation sysfs node,
user can manually input temperature and test the different trip
threshold behaviour for simulation purpose.
WARNING: Be careful while enabling this option on production systems,
because userland can easily disable the thermal policy by simply
flooding this sysfs node with low temperature values.
config IMX_THERMAL
tristate "Temperature sensor driver for Freescale i.MX SoCs"
depends on CPU_THERMAL
depends on MFD_SYSCON
depends on OF
help
Support for Temperature Monitor (TEMPMON) found on Freescale i.MX SoCs.
It supports one critical trip point and one passive trip point. The
cpufreq is used as the cooling device to throttle CPUs when the
passive trip is crossed.
config SPEAR_THERMAL
bool "SPEAr thermal sensor driver"
depends on PLAT_SPEAR
depends on OF
help
Enable this to plug the SPEAr thermal sensor driver into the Linux
thermal framework.
config RCAR_THERMAL
tristate "Renesas R-Car thermal driver"
depends on ARCH_SHMOBILE || COMPILE_TEST
depends on HAS_IOMEM
help
Enable this to plug the R-Car thermal sensor driver into the Linux
thermal framework.
config KIRKWOOD_THERMAL
tristate "Temperature sensor on Marvell Kirkwood SoCs"
depends on ARCH_KIRKWOOD || MACH_KIRKWOOD
depends on OF
help
Support for the Kirkwood thermal sensor driver into the Linux thermal
framework. Only kirkwood 88F6282 and 88F6283 have this sensor.
config DOVE_THERMAL
tristate "Temperature sensor on Marvell Dove SoCs"
depends on ARCH_DOVE || MACH_DOVE
depends on OF
help
Support for the Dove thermal sensor driver in the Linux thermal
framework.
config DB8500_THERMAL
bool "DB8500 thermal management"
depends on ARCH_U8500
default y
help
Adds DB8500 thermal management implementation according to the thermal
management framework. A thermal zone with several trip points will be
created. Cooling devices can be bound to the trip points to cool this
thermal zone if trip points reached.
config ARMADA_THERMAL
tristate "Armada 370/XP thermal management"
depends on ARCH_MVEBU
depends on OF
help
Enable this option if you want to have support for thermal management
controller present in Armada 370 and Armada XP SoC.
config DB8500_CPUFREQ_COOLING
tristate "DB8500 cpufreq cooling"
depends on ARCH_U8500
depends on CPU_THERMAL
default y
help
Adds DB8500 cpufreq cooling devices, and these cooling devices can be
bound to thermal zone trip points. When a trip point reached, the
bound cpufreq cooling device turns active to set CPU frequency low to
cool down the CPU.
config INTEL_POWERCLAMP
tristate "Intel PowerClamp idle injection driver"
depends on THERMAL
depends on X86
depends on CPU_SUP_INTEL
help
Enable this to enable Intel PowerClamp idle injection driver. This
enforce idle time which results in more package C-state residency. The
user interface is exposed via generic thermal framework.
config X86_PKG_TEMP_THERMAL
tristate "X86 package temperature thermal driver"
depends on X86_THERMAL_VECTOR
select THERMAL_GOV_USER_SPACE
default m
help
Enable this to register CPU digital sensor for package temperature as
thermal zone. Each package will have its own thermal zone. There are
two trip points which can be set by user to get notifications via thermal
notification methods.
config ACPI_INT3403_THERMAL
tristate "ACPI INT3403 thermal driver"
depends on X86 && ACPI
help
Newer laptops and tablets that use ACPI may have thermal sensors
outside the core CPU/SOC for thermal safety reasons. These
temperature sensors are also exposed for the OS to use via the so
called INT3403 ACPI object. This driver will, on devices that have
such sensors, expose the temperature information from these sensors
to userspace via the normal thermal framework. This means that a wide
range of applications and GUI widgets can show this information to
the user or use this information for making decisions. For example,
the Intel Thermal Daemon can use this information to allow the user
to select his laptop to run without turning on the fans.
config INTEL_SOC_DTS_THERMAL
tristate "Intel SoCs DTS thermal driver"
depends on X86 && IOSF_MBI
help
Enable this to register Intel SoCs (e.g. Bay Trail) platform digital
temperature sensor (DTS). These SoCs have two additional DTSs in
addition to DTSs on CPU cores. Each DTS will be registered as a
thermal zone. There are two trip points. One of the trip point can
be set by user mode programs to get notifications via Linux thermal
notification methods.The other trip is a critical trip point, which
was set by the driver based on the TJ MAX temperature.
config INT340X_THERMAL
tristate "ACPI INT340X thermal drivers"
depends on X86 && ACPI
select THERMAL_GOV_USER_SPACE
help
Newer laptops and tablets that use ACPI may have thermal sensors and
other devices with thermal control capabilities outside the core
CPU/SOC, for thermal safety reasons.
They are exposed for the OS to use via the INT3400 ACPI device object
as the master, and INT3401~INT340B ACPI device objects as the slaves.
Enable this to expose the temperature information and cooling ability
from these objects to userspace via the normal thermal framework.
This means that a wide range of applications and GUI widgets can show
the information to the user or use this information for making
decisions. For example, the Intel Thermal Daemon can use this
information to allow the user to select his laptop to run without
turning on the fans.
menu "Texas Instruments thermal drivers"
source "drivers/thermal/ti-soc-thermal/Kconfig"
endmenu
menu "Samsung thermal drivers"
depends on ARCH_EXYNOS
source "drivers/thermal/samsung/Kconfig"
endmenu
menu "STMicroelectronics thermal drivers"
depends on ARCH_STI && OF
source "drivers/thermal/st/Kconfig"
endmenu
endif
|