summaryrefslogtreecommitdiff
path: root/board/prodrive/alpr/nand.c
diff options
context:
space:
mode:
authorStefan Roese <sr@denx.de>2006-08-15 14:22:35 +0200
committerStefan Roese <sr@denx.de>2006-08-15 14:22:35 +0200
commit899620c2d66d4eef3b2a0034d062e71d45d886c9 (patch)
tree5e99c4d42663193423bab1bc17308426c171cc56 /board/prodrive/alpr/nand.c
parentf0ff4692ff3372dec55074a8eb444943ab095abb (diff)
Add initial support for the ALPR board from Prodrive
NAND needs some additional testing Patch by Heiko Schocher, 15 Aug 2006
Diffstat (limited to 'board/prodrive/alpr/nand.c')
-rw-r--r--board/prodrive/alpr/nand.c271
1 files changed, 271 insertions, 0 deletions
diff --git a/board/prodrive/alpr/nand.c b/board/prodrive/alpr/nand.c
new file mode 100644
index 000000000..bd9ba3560
--- /dev/null
+++ b/board/prodrive/alpr/nand.c
@@ -0,0 +1,271 @@
+/*
+ * (C) Copyright 2006
+ * Heiko Schocher, DENX Software Engineering, hs@denx.de
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#include <common.h>
+#include <asm/io.h>
+
+#if (CONFIG_COMMANDS & CFG_CMD_NAND)
+
+#include <nand.h>
+
+#if 0
+#define HS_printf(fmt,arg...) \
+ printf("HS %s %s: " fmt,__FILE__, __FUNCTION__, ##arg)
+#else
+#define HS_printf(fmt,arg...) \
+ do { } while (0)
+#endif
+
+#if 0
+#define CPLD_REG uchar
+#else
+#define CPLD_REG u16
+#endif
+
+struct alpr_ndfc_regs {
+ CPLD_REG cmd[4];
+ CPLD_REG addr_wait;
+ CPLD_REG term;
+ CPLD_REG dummy;
+ uchar dum2[2];
+ CPLD_REG data;
+};
+
+static u8 hwctl;
+static struct alpr_ndfc_regs *alpr_ndfc;
+static int alpr_chip = 0;
+
+#if 1
+static int pdnb3_nand_dev_ready(struct mtd_info *mtd);
+
+#if 1
+static u_char alpr_read (void *padr) {
+ return (u_char )*((u16 *)(padr));
+}
+#else
+static u_char alpr_read (void *padr) {
+ u16 hilf;
+ u_char ret = 0;
+ hilf = *((u16 *)(padr));
+ ret = hilf;
+printf("%p hilf: %x ret: %x\n", padr, hilf, ret);
+ return ret;
+}
+#endif
+
+static void alpr_write (u_char byte, void *padr) {
+HS_printf("%p Byte: %x\n", padr, byte);
+ *(volatile u16 *)padr = (u16)(byte);
+}
+
+#elif 0
+#define alpr_read(a) (*(volatile u16 *) (a))
+#define alpr_write(a, b) ((*(volatile u16 *) (a)) = (b))
+#else
+#define alpr_read(a) readw(a)
+#define alpr_write(a, b) writew(a, b)
+#endif
+/*
+ * The ALPR has a NAND Flash Controller (NDFC) that handles all accesses to
+ * the NAND devices. The NDFC has command, address and data registers that
+ * when accessed will set up the NAND flash pins appropriately. We'll use the
+ * hwcontrol function to save the configuration in a global variable.
+ * We can then use this information in the read and write functions to
+ * determine which NDFC register to access.
+ *
+ * There are 2 NAND devices on the board, a Hynix HY27US08561A (32 MByte).
+ */
+static void pdnb3_nand_hwcontrol(struct mtd_info *mtd, int cmd)
+{
+HS_printf("cmd: %x\n", cmd);
+ switch (cmd) {
+ case NAND_CTL_SETCLE:
+ hwctl |= 0x1;
+ break;
+ case NAND_CTL_CLRCLE:
+ hwctl &= ~0x1;
+ break;
+ case NAND_CTL_SETALE:
+ hwctl |= 0x2;
+ break;
+ case NAND_CTL_CLRALE:
+ hwctl &= ~0x2;
+ break;
+ case NAND_CTL_SETNCE:
+ break;
+ case NAND_CTL_CLRNCE:
+ alpr_write(0x00, &(alpr_ndfc->term));
+ break;
+ }
+}
+
+static void pdnb3_nand_write_byte(struct mtd_info *mtd, u_char byte)
+{
+HS_printf("hwctl: %x %x %x %x\n", hwctl, byte, &(alpr_ndfc->cmd[alpr_chip]), &(alpr_ndfc->addr_wait));
+ if (hwctl & 0x1)
+ alpr_write(byte, &(alpr_ndfc->cmd[alpr_chip]));
+ else if (hwctl & 0x2) {
+ alpr_write(byte, &(alpr_ndfc->addr_wait));
+ } else
+ alpr_write(byte, &(alpr_ndfc->data));
+}
+
+static u_char pdnb3_nand_read_byte(struct mtd_info *mtd)
+{
+ return alpr_read(&(alpr_ndfc->data));
+}
+
+static void pdnb3_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+
+/*printf("%s chip:%d hwctl:%x size:%d\n", __FUNCTION__, alpr_chip, hwctl, len);*/
+ for (i = 0; i < len; i++) {
+ if (hwctl & 0x1)
+ alpr_write(buf[i], &(alpr_ndfc->cmd[alpr_chip]));
+ else if (hwctl & 0x2) {
+ alpr_write(buf[i], &(alpr_ndfc->addr_wait));
+ } else {
+ alpr_write(buf[i], &(alpr_ndfc->data));
+ /*printf("i: %d\n", i);*/
+ }
+ }
+}
+
+static void pdnb3_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++) {
+ buf[i] = alpr_read(&(alpr_ndfc->data));
+ }
+}
+
+static int pdnb3_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+ int i;
+
+ for (i = 0; i < len; i++)
+ if (buf[i] != alpr_read(&(alpr_ndfc->data)))
+ return i;
+
+ return 0;
+}
+
+static int pdnb3_nand_dev_ready(struct mtd_info *mtd)
+{
+#if 1
+ volatile u_char val;
+
+/*printf("%s aufruf\n", __FUNCTION__);*/
+ /*
+ * Blocking read to wait for NAND to be ready
+ */
+ val = alpr_read(&(alpr_ndfc->addr_wait));
+
+ /*
+ * Return always true
+ */
+ return 1;
+#else
+ u8 hwctl_org = hwctl;
+ unsigned long timeo;
+ u8 val;
+
+ hwctl = 0x01;
+ pdnb3_nand_write_byte (mtd, NAND_CMD_STATUS);
+ hwctl = hwctl_org;
+
+ reset_timer();
+ while (1) {
+ if (get_timer(0) > timeo) {
+ printf("Timeout!");
+ return 0;
+ }
+
+val = pdnb3_nand_read_byte(mtd);
+/*printf("%s val: %x\n", __FUNCTION__, val);*/
+ if (val & NAND_STATUS_READY)
+ break;
+ }
+ return 1;
+#endif
+
+}
+
+static void alpr_select_chip(struct mtd_info *mtd, int chip)
+{
+ alpr_chip = chip;
+}
+
+static int alpr_nand_wait(struct mtd_info *mtd, struct nand_chip *this, int state)
+{
+ unsigned long timeo;
+
+ if (state == FL_ERASING)
+ timeo = CFG_HZ * 400;
+ else
+ timeo = CFG_HZ * 20;
+
+ if ((state == FL_ERASING) && (this->options & NAND_IS_AND))
+ this->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
+ else
+ this->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
+
+ reset_timer();
+
+ while (1) {
+ if (get_timer(0) > timeo) {
+ printf("Timeout!");
+ return 0;
+ }
+
+ if (this->read_byte(mtd) & NAND_STATUS_READY)
+ break;
+ }
+ return this->read_byte(mtd);
+}
+
+void board_nand_init(struct nand_chip *nand)
+{
+ alpr_ndfc = (struct alpr_ndfc_regs *)CFG_NAND_BASE;
+
+ nand->eccmode = NAND_ECC_SOFT;
+
+ /* Set address of NAND IO lines (Using Linear Data Access Region) */
+ nand->IO_ADDR_R = (void __iomem *) ((ulong) alpr_ndfc + 0x10);
+ nand->IO_ADDR_W = (void __iomem *) ((ulong) alpr_ndfc + 0x10);
+ /* Reference hardware control function */
+ nand->hwcontrol = pdnb3_nand_hwcontrol;
+ /* Set command delay time */
+ nand->hwcontrol = pdnb3_nand_hwcontrol;
+ nand->write_byte = pdnb3_nand_write_byte;
+ nand->read_byte = pdnb3_nand_read_byte;
+ nand->write_buf = pdnb3_nand_write_buf;
+ nand->read_buf = pdnb3_nand_read_buf;
+ nand->verify_buf = pdnb3_nand_verify_buf;
+ nand->dev_ready = pdnb3_nand_dev_ready;
+ nand->select_chip = alpr_select_chip;
+ nand->waitfunc = alpr_nand_wait;
+}
+#endif